Contributing to Django

How | learned to stop worrying and just try to
fix an ORM Bug

First DjangoCon?

Introduction

Ryan Cheley

Trying to get to DjangoCon US

AL

»2022

- . djangocomus

Criteria

e Old?
 January of 2009
e Straightforward(ish)

* SQLite

e Ticket 10070

 Title: Named parameters not working on raw sql queries with sqglite

e Reported by Matias Surdi

Owner: changed from nobody to Ryan Cheley
Status: new -> Assigned

I’'m at DjangoCon US and I’'m looking at this Ticket

My Trac Comment

* raw_query\tests

* tests that already exist
* available

* appear to be testing

* the ticket is asking for

Comment

* Thanks for looking into this. | can get back to work now :)

e By Matias Surdi

* The Reporter of the Issue!

Letting everyone know!

The B is Silent @ryancheley - Oct 20, 2022
| closed a ticket while at the #DjangoConUS2022 7 sprints with Simon
Charette! https://t.co/UTR1sOnE3A

o QO 18 T,
ID 1583206004744867841

View on Twitterc?

M
\
. 1& BN

But then ...

Another Comment

* Broken

* mostly for Oracle and other backends

Another Comment

* Sglite backend
e supports_paramstyle pyformat

* borks

What is supports_paramstyle pyformat?

*Flag

esupport 'pyformat’ style

What is supports_paramstyle pyformat?

o("... %(name)s ...", {'name': value})

*SQLite this was set to False

Feelings ...

Community

Your Web Framework Needs You!

*Ticket difficulty
*Time
*Thought

e ove

Your Web Framework Needs You!

*The Review Process can be challenging
e Same Process
* Not Personal

* Make the code better

Your Web Framework Needs You!

*You can do it!

*You are qualified!

The World Expert

Wondering
being worked
initial time-boxed investigation

you'll be the world expert ™

Working on the Ticket
... again

T—

Write down what you learned =
Replicate the Bug %
Read some docs -
/

Write some code 4~

Test the Code ¢

Settings.py with psql connection string

DATABASES = {
"default": {

"ENGINE": "django.db.backends.postgresql”,

Steps to Reproduce the Bug: Postgres

>>> from django.db import connection

>>> ¢ = connection.cursor()

>>> c.execute("select app_label from django_content_type where id =
1II)

>>> c.execute("select app_label from django_content_type where id =
%(id)s", {'id":'1'})

Steps to Reproduce the Bug: Postgres

 Runs without error

Settings.py with sqlite3 connection string

DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqglite3",

Steps to Reproduce the Bug: SQLite

>>> from django.db import connection

>>> ¢ = connection.cursor()

>>> c.execute("select app_label from django_content_type where id =
1II)

>>> c.execute("select app_label from django_content_type where id =
%(id)s", {'id":'1'})

Traceback (most recent call last): d;
File "/Users/ryan/PycharmProjects/tatisjr/venv/lib/python3.9/site-packages/django/db/backends/utils.py', -._n¢
return self.cursor.execute(sql, params)
File "/Users/ryan/PycharmProjects/tatisjr/venv/lib/python3.9/site-packages/django/db/backends/sqlite3/base.p
return Database.Cursor.execute(self, query, params)
sqlite3.0OperationalError: near "%": syntax error

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<console>", line 1, in <module>
File "/Users/ryan/PycharmProjects/tatisjr/venv/lib/python3.9/site-packages/django/db/backends/utils.py", lin
return super().execute(sql, params)
File "/Users/ryan/PycharmProjects/tatisjr/venv/1lib/python3.9/site-packages/django/db/backends/utils.py", lin
return self._execute_with_wrappers(
File "/Users/ryan/PycharmProjects/tatisjr/venv/1lib/python3.9/site-packages/django/db/backends/utils.py", lin
return executor(sql, params, many, context)
File "/Users/ryan/PycharmProjects/tatisjr/venv/1lib/python3.9/site-packages/django/db/backends/utils.py", lin
return self.cursor.execute(sql, params)
File "/Users/ryan/PycharmProjects/tatisjr/venv/1lib/python3.9/site-packages/django/db/utils.py", line 91, in _
raise dj_exc_value.with_traceback(traceback) from exc_value
File "/Users/ryan/PycharmProjects/tatisjr/venv/lib/python3.9/site-packages/django/db/backends/utils.py", lin
return self.cursor.execute(sql, params)
File "/Users/ryan/PycharmProjects/tatisjr/venv/1lib/python3.9/site-packages/django/db/backends/sqlite3/base.p
return Database.Cursor.execute(self, query, params)
django.db.utils.OperationalError: near "%": syntax error

Workaround

e SQLite supports named parameters
 Different Syntax

>>> c.execute("select name from inventory_host where id=:id", {'id': '1’})
>>> Host.objects.raw("select * from inventory_host where id=:id", {'id':

I-Il})

e Consistent

Workaround

>>> from django.db import connection

>>> ¢ = connection.cursor()

>>> c.execute("select app label from django_content type where id =
1)

>>> c.execute("select * from django_content_type where id =
id", {'id': '1'})

Replicate the Bug %%

Write down what you learn

Read some docs -~

Results of Research

 Stack Trace Error Message

File "/Users/Ryan/PycharmProjects/tatisjr/venv/1ib/python3.9/site-

-~django/db/backends/sqlite3/
base.py" 11ne 357 1n execute

return Database.Curs ute(self, query, pa

Results of Research

* SQLiteCursorWrapper:

* execute
* executemany

* convert_query

Results of Research

def execute(..):

query = self.convert_query(query, names=param_names)

def executemany(..):

query = self.convert_query(query, names=param_names)

Results of Research

def convert_query(self, query):
return FORMAT_QMARK_REGEX.sub("?", query).replace("%%", "%")

Results of Research

* BUT

« FORMAT_QMARK_REGEX = _lazy_re_compile(r"(?<!%)%s")

Results of Research

* _lazy_re_compile(regex, flags=0)

* Two parameters
* regex

* flags
* re.l

* re.S

Results of Research: What have we learned?

» execute() method
« convert_query() method

* executemany() method

Replicate the Bug %%

Read some docs -

Write down what you learn

Write some code S

ldeas for a fix

e select * from django_content_type where id

* fails

e select * from django_content_type where id

e succeeds

%(id)s", {'id':

:id", {'id':

"1}

I-I7}

ldeas for a fix

* Regular Expression

ldeas for a fix

select * from django_content_type where id %(id)s", {'id': “1’}

select * from django_content_type where id = :id", {'id': '1'}

My Regular Expression

e select * from django_content_type where 1id
 select * from django_content_type where 1id

e select * from django_content_type where 1id

%(id)s", {'id': 1’}
%(id", {'id': "1’}

:id", {'id': “1’}

My Regular Expression

e query = re.sub("\)s", "", re.sub("%\(", ":", query))

My Regular Expression

* posted idea

Feedback from Shia Berger

This looks quite fragile
What if string includes *)s"?

Try naming-dict

naming_dict = { param: f":{param}" for param in param_names}
query = query % naming_dict

Feedback from Shia Berger

* Take a look at the Oracle backend

* but at the time | knew what | was doing there

Feedback from Simon Charette

* Avoid using Regex
* Try implementing __ getitem_
* Ensures _missing_param_ message

* instead of KeyError message

Original convert_query

def convert_query(self, query):
return FORMAT_QMARK_REGEX.sub("?", query).replace("%%", "%")

Incorporating Feedback

 Feedback from Shia

naming_dict = { param: f":{param}" for param in param_names}
query = query % naming_dict

Incorporating Feedback

e General Idea

naming_dict = { param: f":{param}" for param in param_names}
query = query % naming_dict

args = {k: ":%s" % k for k in params}
query %= args

My initial Code

def execute(self, query, params=None):

if hasattr(params, "keys"):
args = {k: ":%s" % k for k in params}
query = query 7% args

query = self.convert_query(query)

My initial Code

def executemany(self, query, param_list):

param_list = [p for p in param_list]
try:
if hasattr(param_list[0], "keys"):
args = {k: ":%s" % k for k in param_list[0]}
query = query % args
except IndexError:
pass
query = self.convert_query(query)

Replicate the Bug %%
Read some docs -

Write some code L

Write down what you learn

Test the Code #

Tests

* Current tests

* New tests (if needed)

Tests: Make sure current tests pass

e supports_paramstyle_pyformat = False
* RawQueryTests
e test_pyformat_params

* test_query_representation

Tests: Make sure current tests pass

@skipUnlessDBFeature("supports_paramstyle pyformat")
test_pyformat_params(self):

Tests: Make sure current tests pass

* Add my proposed code

e Change supports_paramstyle_pyformat to be True

Tests: Write New Tests

 Not needed

Tests

./runtests.py -k test_pyformat_params -k
test_query_representation

Tests: Make sure current tests pass

e supports_paramstyle_pyformat = False
 test_pyformat_params

e test_query_representation

Tests: Make sure current tests pass

Testing against Django installed in '/Users/ryan/github/django/django' with up to 8 processes
Found :2 test(s).

Creating test database for alias 'default'...
System check identified no issues (17 silenced).

Ran 2 tests in 0.028s

Tests: Make sure current tests pass

Testing against Django installed in '/Users/ryan/github/django/django' with up to 8 processes

Found :2 test(s).

Creating test database for alias 'default'...
System check identified no issues (17 silenced).

Ran 2 tests in 0.028s

Possible States Testing Matrix

Original Code 1 test should pass 1 test should pass

1 test should be skipped 1 test should fail

Updated Code 1 tests should pass 2 tests should pass @

1 test should be skipped

*Flag = supports_paramstyle_pyformat

Testing

e Run the tests to check new behavior

* Run entire test suite

Replicate the Bug %%

Read some docs -

Write some code £
Test the Code ¢

Write down what you learned

Public Notes

What are Public Notes

* |ssue
* Work through

e problem

Public Notes

* Tips
* Hints
 Breadcrumbs

* What ever you want to call them

Scientific Method %

My Public Notes

File Edit View History Bookmarks i Tab Window

[NN O Troubleshooting Django Ticke! X ﬂ regex101: build, test, and debt. X | @ CLI text processing with GNU - X ‘ Extract Company Name: Pythc X | B Convert curl commands to coc X | O Fixed #10070 -- Added suppo: X ‘ + M
~ C @ github.com/ryancheley/public-notesfissues/1 v G» L 0O e :

) Open Issues

L]
= O ryancheley | public-notes Q Type (7] to search D2 +~||®OIN| & 9

<> Code (O Issues [Pullrequests (») Actions [{ Projects [0 wWiki () Security |~ Insights 88 Settings

Troubleshooting Django Ticket 10070 #1 Gl e ssue |

ryancheley opened this issue on Oct 30, 2022 - 39 comments

9 ryancheley commented on Oct 30, 2022 Owner = *** Assignees @

e ryancheley
Django Ticket 10070 reports an issue "Named parameters not working on raw sgl queries with sglite"

This is my attempt to try and figure out what is going on. Labels]

< A R ¢) q N t
Side note: | initially marked this ticket as done at Django Con US 2022 as it seemed to no longer be a bug based on review of one.ye

test methods, but about a week after it was closed, it was re-opened and shown to be reproducible.

Projects @
® None yet
Milestone @
9 ryancheley commented on Oct 30, 2022 Owner = Author = *** No milestone
Steps to reproduce: Development &
First, let's look at a non-SQLite database and see what happens Create a branch for this issue or link a pull request.
>>> from django.db import connection [E] Notifications Customize
>>> ¢ = connection.cursor() a 7
>>> c.execute("select app_label from django_content_type where id = 1") 2 Unsubscribe
>>> c.execute("select app_label from django_content_type where id = %(id)s", {'id':'1'}) You're receiving notifications because you're

watching this repository.

This runs without error.
1 participant
Now, let's try with connection to a SQLite database)

§

>>> from django.db import connection @
>>> ¢ = connection.cursor()

>>> c.execute("select app_label from django_content_type where id = 1")

>>> c.execute("select app_label from django_content_type where id = %(id)s", {'id':'1'}) <X Pin issue@

8 Lock conversation

The fix

Incorporating Feedback

* Hint from Shia

naming_dict = { param: f":{param}" for param in param_names}
query = query % naming_dict

Incorporating Feedback

e General Idea

naming_dict = { param: f":{param}" for param in param_names}
query = query % naming_dict

args = {k: ":%s" % k for k in params}
query %= args

My initial Code

def execute(self, query, params=None):

if hasattr(params, "keys"):
args = {k: ":%s" % k for k in params}
query = query 7% args

query = self.convert_query(query)

My initial Code

def executemany(self, query, param_list):

param_list = [p for p in param_list]
try:
if hasattr(param_list[0], "keys"):
args = {k: ":%s" % k for k in param_list[0]}
query = query % args
except IndexError:
pass
query = self.convert_query(query)

Original convert_query

def convert_query(self, query):
return FORMAT_QMARK_REGEX.sub("?", query).replace("%%", "%")

Issue Comment by Nick Pope

* Duplication

* Potential for incorrect conversion
* %(value)s to :value
e Also convert %%s to %s

* |ncorrect conversion to ‘?’

Issue Comment by Nick Pope

* Potential for poor performance
* Materialized Generator

* Pull Request to my Pull Request

PR from Nick Pope

def convert_query(self, query, *, names=None):
if names 1is None:
return FORMAT_QMARK_REGEX.sub("?", query).replace("%%", "%")
else:

return query % {name: f":{name}" for name in names}

PR from Nick Pope

def execute(self, query, params=None):

Names

query

list(params) if isinstance(params, Mapping) else None

self.convert_query(query, names=names)

PR from Nick Pope

def executemany(self, query, param_list):

peekable, param_list = tee(iter(param_list))
if (params := next(peekable, None)) and isinstance(params, Mapping):

names = list(params)

else:

names = None

query = self.convert_query(query, names=names)

391
392
393
394
395
396
397

+ + +

Full Diff

def convert_query(self, query):
def convert_query(self, query, *, param_names=None):
if param_names is None:
Convert from "format" style to "gmark" style.
return FORMAT_QMARK_REGEX.sub("?", query).replace("%%", "%")
else:
Convert from "pyformat" style to "named" style.
return query % {name: f":{name}" for name in param_names}

Full Diff

372 def execute(self, query, params=None):
373 if params is None:
374 return Database.Cursor.execute(self, query)

- query = self.convert_query(query)

375 + # Extract names if params is a mapping, i.e. "pyformat" style is used.
376 + param_names = list(params) if isinstance(params, Mapping) else None
ST + query = self.convert_query(query, param_names=param_names)

378 return Database.Cursor.execute(self, query, params)
379

+ + + + + + + +

Full Diff

def executemany(self, query, param_list):
query = self.convert_query(query)
Extract names if params is a mapping, i.e. "pyformat" style is used.
Peek carefully as a generator can be passed instead of a list/tuple.
peekable, param_list = tee(iter(param_list))
if (params := next(peekable, None)) and isinstance(params, Mapping):
param_names = list(params)
else:
param_names = None
query = self.convert_query(query, param_names=param_names)
return Database.Cursor.executemany(self, query, param_list)

BONUS!

Python SQLite Docs Update!

sqlite3.paramstyle
String constant stating the type of parameter marker formatting expected by
the sqlite3 module. Required by the DB-API. Hard-coded to "gmark".

Note: The sglite3 module supports both "gmark" and "numeric" DB-API
parameter styles, because that is what the underlying SQLite
library supports. However, the DB-API does not allow multiple
values for the ”paramstyle" attribute

Python SQLite Docs Update!

Note: The sglite3 module supports both "gmark”,

" "
"numeric" and named DB-API parameter

styles, because that is what the underlying
SQLite library supports. However, the DB-API
does not allow multiple values for the
”paramstyle" attribute

Python SQLite Docs Update!

Note: The named DB-API parameter style is also supported

The community

Shia Berger

* |dentified fragility
* Regex should be avoided

* Starting point

Simon Charette

* Gave great Keynote at DjangoCon US 2022 on the State of the ORM
* Awesome introduction on ORM structure at Sprints

e Update to the docs!

Nick Pope

* PR on my PR to help improve the code

 Remove Code Duplication

Mariusz Felisiak

e Simplified comments

 Merged the PR

Experience

e | learned a TON about
* SQLite
e The ORM

* Python

Experience

e Public Notes

* Upgrading OS on Linux
e Python 3.11 on Raspberry Pi

* SSH Keys

Contributions Since

* Django Packages
* Documentation improvements

e Code Reviews

Contributions Since

* Implemented Django at my employer
* Admin

* MS SQL

Lessons

The ORM can seem B I G and
SCARY

The Code for Django can seem B I G and

SCARY

But remember

The Django ORM ...

|s Python

In fact, all of Django ...

|s Python

Looking at Tickets

e Look At*?®

* Read -

e Write /;

|s Python

GitHub Login DjangoProject Login Preferences AP

Reports Timeline Wiki Search

Custom Query (1012 matches)

django

Documentation

Triaging tickets

So remember ...

Your Framework needs YOU

Community

Sprints 2023

* Development Sprints

e Contribution Sprints

Acknowledgements

» Katie McLaughlin

* Web Developer Team
* Bookie
 Chris
* Jason

* Jon

* Abigail Cheley

Thank you

Find me on ...

Mastodon
https://mastodon.social/@ryancheley

GitHub
https://github.com/ryancheley/

LinkedIn
https://www.linkedin.com/in/ryan-cheley/

https://mastodon.social/@ryancheley
https://github.com/ryancheley/
https://www.linkedin.com/in/ryan-cheley/

Reference Links

Your Web Framework Needs You! (Slide 33)
https://www.youtube.com/watch?v=8eYM1uPKg7c

Increase your productivity on personal projects with comprehensive docs and automated tests — DCUS (Slide
88)
https://www.youtube.com/watch?v=GLkRK2rJGBO

My Public Notes (Slide 93)
https://github.com/ryancheley/public-notes/issues/1

Keynote: State of the Object-Relational Mapping (ORM) with Simon Charette (Slide 116)
https://www.youtube.com/watch?v=HNIGFrIBI8o

Django Triaging Tickets (Slide 137)
https://docs.djangoproject.com/en/dev/internals/contributing /triaging-tickets/

https://www.youtube.com/watch?v=8eYM1uPKg7c
https://www.youtube.com/watch?v=GLkRK2rJGB0
https://github.com/ryancheley/public-notes/issues/1
https://www.youtube.com/watch?v=HNlGFrIBl8o
https://docs.djangoproject.com/en/dev/internals/contributing/triaging-tickets/

